Introduction
Generally machine learning can be defined as the scientific study of a set of instructions and statistical models which is used by any computer system to effectively perform a task or calculation relying on different patterns and inference rather than using explicit instructions. It can also be said as the subset of Artificial Intelligence (AI) and a scientific discipline concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data such as from sensors and databases.
Machine learning training in Nepal has been developed with prime objectives of machine learning technology is to build algorithms that can get input data and leverage statistical analysis to predict an acceptable output value. Machine learning is expected to bring heavy changes to the world of technologies. It is a subfield of artificial intelligence and computer science that allows the software application to be more accurate in predicting results.
Machine learning training has plenty of advantages as it is used in so many industries of applications such as banking and financial sector, healthcare, social media, publishing and retail, publishing, etc. Due to machine learning, there are tools available to provide continuous quality improvement in complex and large process environments. It also helps in efficient utilization of resources and reducing time cycle.
Machine learning in these days has widely been used in data mining, natural language processing, computer version, biometrics, search engines, handwriting recognition, detection of credit card fraud, securities market analysis, strategy games and robotics. The best way to understand the potential of machine learning is to explore how people and companies are currently taking advantages of it. In a core, it is the process of granting a machine or model access to data and letting it learn for itself.
The prime focal point of machine learning research is to automatically learn to recognize complex patterns. The difficulty lies in the fact that the set of all possible behaviors given all possible inputs is too large to be covered by the set of observed examples (training data). Hence the learner must generalize from the given examples, so as to able to produce a useful output in new cases.
Machine learning and pattern recognition, a feature is an individual measurable property or characteristics of a phenomenon being observed. Choosing informative and independent features is a crucial step for effective algorithms in pattern recognition, classification and regression.